Backward Stochastic Volterra Integral Equations

Jiongmin Yong
University of Central Florida

July, 2010

Outline

1. Introduction — Motivations
2. Definition of Solution
3. Well-Posedness of BSVIEs
4. Properties of Solutions
5. Some Remarks

1. Introduction - Motivations

$(\Omega, \mathcal{F}, F, P)$ - a complete filtered probability space $W(\cdot)$ - a onedimensional standard Brownian motion
$\mathrm{F} \equiv\left\{\mathcal{F}_{t}\right\}_{t \geq 0}$ - natural filtration of $W(\cdot)$, augmented by all P-null sets
Consider FSDE:

$$
\begin{equation*}
d X(t)=b(t, X(t)) d t+\sigma(t, X(t)) d W(t) \tag{1.1}
\end{equation*}
$$

$$
X(0)=x
$$

Equivalent to:
(1.2) $\quad X(t)=x+\mathrm{Z}_{t} b(s, X(s)) d s+\mathrm{Z}_{t} \sigma(s, X(s)) d W(s)$.

General forward stochastic Volterra integral equation: (FSVIE)
(1.3) $X(t)=\varphi(t)+\mathrm{Z}_{t} b(t, s, X(s)) d s+\mathrm{Z}_{t} \sigma(t, s, X(s)) d W(s)$.

- In general, FSVIE (1.3) cannot be transformed into a form of FSDE (1.1).
- FSVIE (1.3) allows some long-range dependence on the noises.
- Could allow $\sigma(t, s, X(s))$ to be \mathcal{F}_{t}-measurable, still might have adapted solutions (Pardoux-Protter, 1990).
- May model wealth process involving investment delay, etc. (Duffie-Huang, 1986).

Consider BSDE:

$$
\begin{equation*}
d Y(t)=-g(t, Y(t), Z(t)) d t+Z(t) d W(t), \quad t \in[0, T] \tag{1.4}
\end{equation*}
$$

$$
Y(T)=\xi
$$

- Linear case was introduced by Bismut (1973).
- Nonlinear case was introduced by Pardoux-Peng (1990).
- Can be applied to (European) contingent claim pricing, stochastic differential utility, dynamic risk measures,...
- Leads to nonlinear Feynman-Kac formula, pointwise convergence in homogenization problems, nonlinear expectation, ...

BSDE (1.4) is equivalent to
(1.5) $\left.\quad Y(t)=\xi+\mathrm{Z}_{t} g(s, Y(s), Z(s)) d s\right)_{t}^{\mathrm{Z}_{t}} Z(s) d W(s)$.

Called a backward stochastic Volterra integral equation (BSVIE).
Recall:

Question:
What is the analog of (1.3) for (1.5) as (1.3) for (1.2)?

A Proposed Form:

$$
\begin{equation*}
\mathrm{Z}_{T} \tag{1.6}
\end{equation*}
$$

$(Y(\cdot), Z(\cdot, \cdot))$ - unknown process
Remarks:

- The term $Z(t, s)$ depends on t and s;
- The drift depends on both $Z(t, s)$ and $Z(s, t)$.
- (1.6) is strictly more general than BSDE (1.5).
- $\psi(\cdot)$ does not have to be F-adapted.
- Need $Z(t, \cdot)$ to be F-adapted, and

$$
|Z(t, s)|^{2} d s<\infty \text {, a.e. } t \in[0, T] \text {, a.s. }
$$

By taking conditional expectation on (1.6), we have

$$
Y(t)=\mathrm{E}^{\mathrm{h}} \psi(t)+{ }_{t}^{\mathrm{Z}_{T}} g(t, s, Y(s), Z(t, s), Z(s, t)) d s^{\overline{\mathcal{F}^{\prime}} \mathcal{F}_{t} .}
$$

This leads to the second interesting motivation.

- Expected discounted utility (process) has the form:

$$
Y(t)=\mathrm{E} \mathrm{E}^{\mathrm{h}} \mathrm{e}^{-\beta(T-t)}+\mathrm{Z}_{t} u(C(s)) e^{-\beta(s-t)} d \bar{s}^{\overline{\mathcal{F}}} \mathcal{F}_{t}, \quad t \in[0, T] .
$$

$C(\cdot)$ - consumption process, $u(\cdot)$ - utility function
β - discount rate, $\quad \xi$ - terminal time wealth

- Expected discounted utility is equivalent to a linear BSDE:

$$
Y(t)=\xi+{ }_{t}^{\mathrm{Z}_{T} £}-\beta Y(s)+C(u(s))^{\mathrm{\alpha}} d s-{ }_{t}^{\mathrm{Z}_{T}} Z(s) d W(s) .
$$

- $e^{-\beta(s-t)}$ exhibits a time-consistent memory effect. If the memory is not time-consistent, the utility process will not be a solution to a BSDE! But, it might be a solution to a BSVIE!
- Duffie-Epstein (1992) introduced stochastic differential utility:

$$
Y(t)=\mathrm{E}_{\xi}^{\mathrm{h}}{\underset{t}{\mathrm{Z}_{T}}}_{t} g(s, Y(s)) d s^{\overline{\mathcal{F}}} \mathcal{F}_{t}^{\mathrm{i}}, \quad t \in[0, T] .
$$

which is equivalent to a nonlinear BSDE:

$$
Y(t)=\xi+\mathrm{Z}_{t} g(s, Y(s)) d s{\underset{t}{t}}_{\mathrm{Z}_{T}} Z(s) d W(s) .
$$

2. Definition of Solutions.

Let $H=\mathrm{B}^{m}, \mathrm{R}^{m \times d}$, etc., with norm $|\cdot| \cdot \underline{a}$
$L^{2}(\Omega)=\xi: \Omega \rightarrow H^{-} \xi \in \mathcal{F}_{T}, E|\xi|^{2}<\infty$,
$L^{2}((0, T) \times \Omega)={ }^{\text {© }} \varphi:(0, T) \times \Omega \rightarrow H$
Z_{T}
φ is $\mathcal{B}([0, T]) \otimes \mathcal{F}_{T}$-measurable, $\mathrm{E} \quad|\varphi(t)|^{2} d t<\infty^{-}$,
$L_{\mathbb{F}}^{2}(0, T)={ }^{\complement} \varphi \in L^{2}((0, T) \times \Omega), \varphi(\cdot)$ is F -adapted ${ }^{\text {a }}$.
$L^{2}\left(0, T ; L_{\mathbb{F}}^{2}(0, T)\right)={ }^{®^{C}} Z ;[0, T]^{2} \times \Omega \rightarrow H^{-}$
$Z\left(\underset{Z}{ }, Z_{T}^{\prime}\right.$ is F-adapted, ale. $t \in[0, T]$,
E $0_{0}|Z(t, s)|^{2} d s d t<\infty$.

Recall:
(2.1)

$$
\begin{aligned}
Y(t)=\psi(t)+ & Z_{T} g(t, s, Y(s), Z(t, s), Z(s, t)) d s \\
& {\underset{\quad}{Z_{T}}}_{T} \quad Z(t, s) d W(s), \quad t \in[0, T]
\end{aligned}
$$

Similar to BSDEs, it seems to be reasonable to introduce
Definition 2.1. $(Y, Z) \in L_{\mathbb{F}}^{2}(0, T) \times L^{2}\left(0, T ; L_{\mathbb{F}}^{2}(0, T)\right)$ satisfying (2.1) is called an adapted solution of BSVIE (2.1).

Example 2.2. Consider BSVIE:
(2.2) $Y(t)={ }_{t}^{\mathrm{Z}_{T}} Z(s, t) d s-\mathrm{Z}_{T} Z(t, s) d W(s), \quad t \in[0, T]$.

We can check that

$$
\begin{aligned}
& Y(t)=(T-t) \zeta(t), \quad t \in[0, T] \\
& Z(t, s)=I_{[0, t]}(s) \zeta(s), \quad(t, s) \in[0, T] \times[0, T]
\end{aligned}
$$

is an adapted solution of (2.2) for any $\zeta(\cdot) \in L_{\mathbb{F}}^{2}(0, T ; R)$. Thus, adapted solutions are not unique!

Observation:
(2.1)

$$
\begin{gathered}
Y(t)=\psi(t)+\quad{ }_{t} g(t, s, Y(s), Z(t, s), Z(s, t)) d s \\
\mathbf{Z}_{T} \\
{ }_{t} \quad Z(t, s) d W(s), \quad t \in[0, T]
\end{gathered}
$$

does not give enough "restrictions" on $Z(t, s)$ with $0 \leq s \leq t \leq T$.
Need to "specify" $Z(t, s)$ for $0 \leq s \leq t \leq T$.
Definition 2.3. $(Y, Z) \in L_{\mathbb{F}}^{2}(0, T) \times L^{2}\left(0, T ; L_{\mathbb{F}}^{2}(0, T)\right)$ is called an adapted M-solution of (2.1) if (2.1) is satisfied and also

$$
Z_{t}
$$

(2.3) $\quad Y(t)=\mathrm{E} Y(t)+{ }_{0} Z(t, s) d W(s), \quad t \in[0, T]$.

3. Well-posedness of BSVIEs.

(H1) Map g is measurable satisfying

$$
\mathrm{E}_{0}^{\mathrm{Z}_{T^{3}} \mathrm{Z}_{T}}|g(t, s, 0,0)| d s^{2} d t<\infty
$$

and exists a (deterministic) function L with

$$
\sup _{T} \mathrm{Z}_{T} L(t, s)^{2+\varepsilon} d s<\infty
$$

for some $\varepsilon>0$ such that

$$
\begin{aligned}
& |g(t, s, y, z, \zeta)-g(t, s, \bar{y}, \bar{z}, \bar{\zeta})| \\
& \leq L(t, s)^{i}|y-\bar{y}|+|z-\bar{z}|+|\zeta-\bar{\zeta}|^{\dagger}
\end{aligned}
$$

Theorem 3.1. Let (H1) hold. Then $\forall \psi$, (2.1) admits a unique adapted M -solution (Y, Z). Moreover: for any $r \in[0, T]$,

$$
\begin{align*}
& \mathrm{Z}_{T} \quad \mathrm{E}|Y(t)|^{2} d t+{ }_{r} \mathrm{Z}_{T} \mathrm{Z}_{T} \\
& \quad{ }_{r} \mathrm{E}|Z(t, s)|^{2} d s d t \\
& { }^{\mathrm{h} \mathrm{Z}_{T}} \mathrm{Z}_{\mathrm{Z}^{3} \mathrm{Z}_{T}}{ }_{r} \mathrm{E}|\psi(t)|^{2} d t+{ }_{r}{ }_{r}|g(t, s, 0,0)| d s^{2} d t \tag{3.1}
\end{align*}
$$

If (\bar{Y}, \bar{Z}) is the adapted M-solution corresponding to $\bar{\psi}$, then

$$
\begin{aligned}
& \mathrm{Z}_{T} \quad \mathrm{E}|Y(t)-\bar{Y}(t)|^{2} d t+{ }_{r} \mathrm{Z}_{T} \mathrm{Z}_{T} \\
& { }_{r} \mid Z(t, s)-\bar{Z} \\
& \mathrm{Z}_{r} \mathrm{Z}_{T}{ }_{r} \mathrm{E}|\psi(t)-\bar{\psi}(t)|^{2} d t, \quad \forall r \in[0, T] .
\end{aligned}
$$

(3.2)

A Difference between BSDEs and BSVIEs:
For BSDE

$$
\begin{aligned}
& Z_{T} \quad Z_{T} \\
& Y(t)=\xi+\quad g(s, Y(s), Z(s)) d s-\quad Z(s) d W(s) \\
& \mathrm{Z}_{T}^{t} \quad \mathbf{Z}_{T}^{t}
\end{aligned}
$$

$$
\begin{aligned}
& =Y(T-\delta)+_{t} g(s, Y(s), Z(s)) d s-_{t} \quad Z(s) d W(s) \text {, } \\
& t \in[0, T-\delta] .
\end{aligned}
$$

Thus, one can obtain the solvability on $[T-\delta, T]$, then on [$T-2 \delta, T-\delta$], etc., to get solvability on $[0, T]$.

For BSVIE: (with $t \in[0, T-\delta]$)

$$
\begin{aligned}
& \mathrm{Z}_{T} \quad \mathrm{Z}_{T} \\
& Y(t)=\psi(t)+{ }_{t} g(t, s, Y(s), Z(t, s), Z(s, t)) d s-{ }_{t} \quad Z(t, s) d W(s) \\
& Z_{T} \mathbf{Z}_{T}^{t} \\
& =\psi(t)+{ }_{T-\delta} g(t, s, Y(s), Z(t, s), Z(s, t)) d s-T_{T-\delta} Z(t, s) d W(s) \\
& \mathrm{Z}_{T-\delta}^{T-\delta} \quad \mathrm{Z}_{T-\delta}^{T-\delta} \\
& +{ }_{t} \quad g(t, s, Y(s), Z(t, s), Z(s, t)) d s \epsilon_{t} \quad Z(t, s) d W(s) \\
& \equiv \vartheta(t)+{ }_{t}^{t} Z_{T-\delta} g(t, s, Y(s), Z(t, s), Z(s, t)) d s-{ }_{t} \quad Z^{t}{ }_{T-\delta}(t, s) d W(s),
\end{aligned}
$$

where it is not obvious if $\emptyset(t)$ is/can be chosen $\mathcal{F}_{T-\delta}$-measurable!

4. Properties of Solutions.

- A Duality Principle

ODE case: Consider
(4.1)

$$
\dot{x}(t)=A x(t)+f(t), \quad x(0)=0
$$

(4.2)

$$
\dot{y}(t)=-A^{T} y(t)-g(t), \quad y(T)=0 .
$$

Then

$$
\frac{d}{d t}\langle x(t), y(t)\rangle=\langle f(t), y(t)\rangle-\langle x(t), g(t)\rangle .
$$

Thus,
(4.3)

$$
\mathrm{Z}_{0}\langle x(t), g(t)\rangle d t=\mathrm{Z}_{0}\langle y(t), f(t)\rangle d t .
$$

- (4.2) is called an adjoint equation of (4.1).
- (4.3) is called a duality between (4.1) and (4.2).
- (linear) SDE and BSDE have a similar duality principle. Itô's formula is commonly used.

Theorem 4.1. Let $\varphi_{Z^{\prime}} \in L_{T}^{2}(0, T)$ and $\psi \in \mathcal{Z}_{t}^{L^{2}}((0, T) \times \Omega)$. Let (4.4) $X(t)=\varphi(t)+{ }_{0} A_{0}(t, s) X(s) d s+{ }_{0} A_{1}(t, s) X(s) d W(s)$,

$$
Y(t)=\psi(t)+{ }_{t}^{\mathrm{Z}_{\mathrm{f}}} A_{0}(s, t)^{T} Y(s)+A_{1}(s, t)^{T} Z(s, t)^{\mathfrak{\alpha}} d s
$$

(4.5)

$$
-\mathrm{Z}_{t}^{t} Z(t, s) d W(s), \quad t \in[0, T]
$$

Then the following relation holds:
(4.6) $\quad \mathrm{E}_{0}^{T}\langle Y(t), \varphi(t)\rangle d t=\mathrm{E}{ }_{0}^{T}\langle\psi(t), X(t)\rangle d t$.
(4.5) - the adjoint equation of (4.4)
(4.6) - the duality between (4.4) and (4.5).

- A Comparison Theorem

Consider BSDEs: $(k=1,2)$
(4.7)

$$
d Y^{k}(t)=-g^{k}\left(t, Y^{k}(t), Z^{k}(t)\right) d t+Z^{k}(t) d W(t)
$$

$$
Y^{k}(T)=\xi^{k}
$$

Let
(4.8)

$$
\begin{aligned}
& g^{1}(t, s, y, z) \leq g^{2}(t, s, y, z), \quad \forall(t, s, y, z), \\
& \xi^{1} \leq \xi^{2}, \quad \text { a.s. }
\end{aligned}
$$

Then
(4.9) $\quad Y^{1}(t) \leq Y^{2}(t), \quad t \in[0, T]$, a.s.

- Itô formula is used in the proof.
- Does not rely on the comparison of FSDEs.

Theorem 4.2. For $k=1,2$, let $g^{k}:[0, T]^{2} \times \mathrm{R} \times \mathrm{R} \rightarrow \mathrm{R}$ and $\psi^{k}(\cdot) \in L_{\mathbb{F}}^{2}(0, T ; \mathrm{R})$ such that
(4.10)

$$
\begin{aligned}
& g^{1}(t, s, y, \zeta) \leq g^{2}(t, s, y, \zeta), \quad \forall(t, s, y, \zeta) \\
& \psi^{1}(t) \leq \psi^{2}(t), \quad t \in[0, T], \text { a.s. }
\end{aligned}
$$

Let $\left(Y^{k}(\cdot), Z^{k}(\cdot, \cdot)\right)$ be the adapted M-solution of BSIVE

$$
\begin{aligned}
& Y^{k}(t)=\psi^{k}(t)+\mathrm{Z}_{T} \\
& \mathrm{Z}_{T}^{t} \\
& g^{k}\left(t, s, Y^{k}(s), Z^{k}(s, t)\right) d s \\
&{ }_{t}
\end{aligned}
$$

(4.11)

Then the following holds:
(4.12)

$$
Y^{1}(t) \leq Y^{2}(t), \quad \forall t \in[0, T]
$$

- Sub-Additivity and Convexity.

Let $(Y(\cdot), Z(\cdot, \cdot))$ be the adapted solution of BSVIE
(4.13)

$$
\begin{aligned}
Y(t)=\psi(t)+ & \mathrm{Z}_{T} g(t, s, Y(s), Z(s, t)) d s \\
& { }^{\mathbf{Z}_{\mathrm{Z}}}{ }_{T} Z(t, s) d W(s) .
\end{aligned}
$$

Denote
(4.14) $\quad \rho(t ; \psi(\cdot))=Y(t), \quad t \in[0, T]$.

- $\psi(\cdot) \mapsto \rho(t ;-\psi(\cdot))$ is essentially a dynamic risk measure.

Proposition 4.4. Let $g:[0, T]^{2} \times \mathrm{R} \times \mathrm{R}^{d} \rightarrow \mathrm{R}$.
(i) Suppose $(y, \zeta) \mapsto g(t, s, y, \zeta)$ is sub-additive:

$$
\begin{gathered}
g\left(t, s, y_{1}+y_{2}, \zeta_{1}+\zeta_{2}\right) \leq g\left(t, s, y_{1}, \zeta_{1}\right)+g\left(t, s, y_{2}, \zeta_{2}\right), \\
\forall(t, s) \in[0, T]^{2}, y_{1}, y_{2} \in \mathrm{R}, \zeta_{1}, \zeta_{2} \in \mathrm{R}^{d}, \text { a.s. }
\end{gathered}
$$

Then $\psi(\cdot) \mapsto \rho(t ; \psi(\cdot))$ is sub-additive:
$\rho\left(t ; \psi_{1}(\cdot)+\psi_{2}(\cdot)\right) \leq \rho\left(t ; \psi_{1}(\cdot)\right)+\rho\left(t ; \psi_{2}(\cdot)\right), \quad t \in[0, T]$, a.s.
(ii) Suppose $(y, z) \mapsto g(t, s, y, \zeta)$ is convex:

$$
\begin{aligned}
& g\left(t, s, \lambda y_{1}+(1-\lambda) y_{2}, \lambda \zeta_{1}+(1-\lambda) \zeta_{2}\right) \\
& \leq \lambda g\left(t, s, y_{1}, \zeta_{1}\right)+(1-\lambda) g\left(t, s, y_{2}, \zeta_{2}\right) \\
& \quad \forall(t, s) \in[0, T]^{2}, y_{1}, y_{2} \in \mathrm{R}, \zeta_{1}, \zeta_{2} \in \mathrm{R}^{d}, \text { a.s. }, \quad \lambda \in[0,1]
\end{aligned}
$$

Then $\psi(\cdot) \mapsto \rho(t ; \psi(\cdot))$ is convex:

$$
\begin{gathered}
\rho\left(t ; \lambda \psi_{1}(\cdot)+(1-\lambda) \psi_{2}(\cdot)\right) \leq \lambda \rho\left(t ; \psi_{1}(\cdot)\right)+(1-\lambda) \rho\left(t ; \psi_{2}(\cdot)\right), \\
t \in[0, T], \text { a.s. }, \lambda \in[0,1] .
\end{gathered}
$$

- Similar results hold if exchanging super-additivity and sub-additivity, convexity and concavity, respectively.

5. Some Remarks:

- Regularity of adapted M-solutions:
(1.6)

$$
\begin{gathered}
Y(t)=\psi(t)+{ }_{t} \quad \mathrm{Z}_{T} g(t, s, Y(s), Z(t, s), Z(s, t)) d s \\
\mathrm{Z}_{T} \\
{ }_{t} Z(t, s) d W(s), \quad t \in[0, T]
\end{gathered}
$$

Continuity of $t \mapsto Y(t)$ is not trivial. Malliavin calculus will be involved.

- Necessary conditions for optimal control of FSVIEs can be obtained.
- Existence of dynamic risk measure for general position processes.

Thank You!

