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1. Introduction — Motivations

(Ω,F ,F,P) | a complete flltered probability space
W (·) | a one-dimensional standard Brownian motion
F ≡ {Ft}t≥0 | natural flltration of W (·), augmented by all

P-null sets

Consider FSDE:

(1.1)

8
<
:

dX (t) = b(t,X (t))dt + σ(t,X (t))dW (t),

X (0) = x .

Equivalent to:

(1.2) X (t) = x +

Z t

0
b(s,X (s))ds +

Z t

0
σ(s,X (s))dW (s).

General forward stochastic Volterra integral equation: (FSVIE)

(1.3) X (t) = ϕ(t) +

Z t

0
b(t, s,X (s))ds +

Z t

0
σ(t, s,X (s))dW (s).



• In general, FSVIE (1.3) cannot be transformed into a form of
FSDE (1.1).

• FSVIE (1.3) allows some long-range dependence on the noises.

• Could allow σ(t, s,X (s)) to be Ft-measurable, still might have
adapted solutions (Pardoux–Protter, 1990).

• May model wealth process involving investment delay, etc.
(Duffie–Huang, 1986).



Consider BSDE:

(1.4)

8
<
:

dY (t)=−g(t,Y (t),Z (t))dt+Z (t)dW (t), t ∈ [0,T ],

Y (T ) = ξ.

• Linear case was introduced by Bismut (1973).
• Nonlinear case was introduced by Pardoux–Peng (1990).
• Can be applied to (European) contingent claim pricing,

stochastic differential utility, dynamic risk measures,...
• Leads to nonlinear Feynman-Kac formula,

pointwise convergence in homogenization problems,
nonlinear expectation, ...



BSDE (1.4) is equivalent to

(1.5) Y (t) = ξ +

Z T

t
g(s,Y (s),Z (s))ds −

Z T

t
Z (s)dW (s).

Called a backward stochastic Volterra integral equation (BSVIE).

Recall:

(1.2) X (t) = x +

Z t

0
b(s,X (s))ds +

Z t

0
σ(s,X (s))dW (s).

(1.3) X (t) = ϕ(t) +

Z t

0
b(t, s,X (s))ds +

Z t

0
σ(t, s,X (s))dW (s).

Question:

What is the analog of (1.3) for (1.5) as (1.3) for (1.2)?



A Proposed Form:

(1.6)
Y (t) = ψ(t) +

Z T

t
g(t, s,Y (s),Z (t, s),Z (s, t))ds

−
Z T

t
Z (t, s)dW (s), t ∈ [0,T ],

(Y (·),Z (· , ·)) | unknown process

Remarks:

• The term Z (t, s) depends on t and s;

• The drift depends on both Z (t, s) and Z (s, t).

• (1.6) is strictly more general than BSDE (1.5).

• ψ(·) does not have to be F-adapted.

• Need Z (t, ·) to be F-adapted, andZ T

0
|Z (t, s)|2ds < ∞, a.e. t ∈ [0,T ], a.s.



By taking conditional expectation on (1.6), we have

Y (t) = E
h
ψ(t) +

Z T

t
g(t, s,Y (s),Z (t, s),Z (s, t))ds

flflFt

i
.

This leads to the second interesting motivation.

• Expected discounted utility (process) has the form:

Y (t) = E
h
ξe−β(T−t) +

Z T

t
u(C (s))e−β(s−t)ds

flflFt

i
, t ∈ [0,T ].

C (·) — consumption process, u(·) — utility function
β — discount rate, ξ — terminal time wealth

• Expected discounted utility is equivalent to a linear BSDE:

Y (t) = ξ +

Z T

t

£− βY (s) + C (u(s))
⁄
ds −

Z T

t
Z (s)dW (s).



• e−β(s−t) exhibits a time-consistent memory effect. If the memory
is not time-consistent, the utility process will not be a solution
to a BSDE! But, it might be a solution to a BSVIE!

• Duffie–Epstein (1992) introduced stochastic differential utility:

Y (t) = E
h
ξ +

Z T

t
g(s,Y (s))ds

flflFt

i
, t ∈ [0,T ].

which is equivalent to a nonlinear BSDE:

Y (t) = ξ +

Z T

t
g(s,Y (s))ds −

Z T

t
Z (s)dW (s).





2. Definition of Solutions.

Let H = Rm,Rm×d , etc., with norm | · |.
L2(Ω) =

'
ξ : Ω → H

flfl ξ ∈ FT ,E |ξ|2 < ∞“
,

L2((0,T )× Ω) =
'
ϕ : (0,T )× Ω → H

flfl

ϕ is B([0,T ])⊗FT -measurable, E
Z T

0
|ϕ(t)|2dt < ∞“

,

L2
F(0,T ) =

'
ϕ ∈ L2((0,T )× Ω), ϕ(·) is F-adapted

“
.

L2(0,T ; L2
F(0,T )) =

'
Z ; [0,T ]2 × Ω → H

flfl
Z (t, ·) is F-adapted, a.e. t ∈ [0,T ],

E
Z T

0

Z T

0
|Z (t, s)|2dsdt < ∞“

.



Recall:

(2.1)
Y (t) = ψ(t) +

Z T

t
g(t, s,Y (s),Z (t, s),Z (s, t))ds

−
Z T

t
Z (t, s)dW (s), t ∈ [0,T ],

Similar to BSDEs, it seems to be reasonable to introduce

Definition 2.1. (Y ,Z ) ∈ L2
F(0,T )× L2(0,T ; L2

F(0,T )) satisfying
(2.1) is called an adapted solution of BSVIE (2.1).



Example 2.2. Consider BSVIE:

(2.2) Y (t) =

Z T

t
Z (s, t)ds −

Z T

t
Z (t, s)dW (s), t ∈ [0,T ].

We can check that
8
<
:

Y (t) = (T − t)ζ(t), t ∈ [0,T ],

Z (t, s) = I[0,t](s)ζ(s), (t, s) ∈ [0,T ]× [0,T ],

is an adapted solution of (2.2) for any ζ(·) ∈ L2
F(0,T ;R). Thus,

adapted solutions are not unique!



Observation:

(2.1)
Y (t) = ψ(t) +

Z T

t
g(t, s,Y (s),Z (t, s),Z (s, t))ds

−
Z T

t
Z (t, s)dW (s), t ∈ [0,T ],

does not give enough \restrictions" on Z (t, s) with
0 ≤ s ≤ t ≤ T .

Need to \specify" Z (t, s) for 0 ≤ s ≤ t ≤ T .

Definition 2.3. (Y ,Z ) ∈ L2
F(0,T )× L2(0,T ; L2

F(0,T )) is called
an adapted M-solution of (2.1) if (2.1) is satisfled and also

(2.3) Y (t) = EY (t) +

Z t

0
Z (t, s)dW (s), t ∈ [0,T ].



3. Well-posedness of BSVIEs.

(H1) Map g is measurable satisfying

E
Z T

0

‡ Z T

t
|g(t, s, 0, 0)|ds

·2
dt < ∞,

and exists a (deterministic) function L with

sup
t∈[0,T ]

Z T

t
L(t, s)2+εds < ∞,

for some ε > 0 such that

|g(t, s, y , z , ζ)− g(t, s, ȳ , z̄ , ζ̄)|
≤ L(t, s)

¡|y − ȳ |+ |z − z̄ |+ |ζ − ζ̄|¢.



Theorem 3.1. Let (H1) hold. Then ∀ψ, (2.1) admits a unique
adapted M-solution (Y ,Z ). Moreover: for any r ∈ [0,T ],

(3.1)

Z T

r
E|Y (t)|2dt +

Z T

r

Z T

r
E|Z (t, s)|2dsdt

≤ C
h Z T

r
E|ψ(t)|2dt +

Z T

r

‡ Z T

r
|g(t, s, 0, 0)|ds

·2
dt

i
.

If (Ȳ , Z̄ ) is the adapted M-solution corresponding to ψ̄, then

(3.2)

Z T

r
E|Y (t)− Ȳ (t)|2dt+

Z T

r

Z T

r
E|Z (t, s)− Z̄ (t, s)|2dsdt

≤ C

Z T

r
E|ψ(t)− ψ̄(t)|2dt, ∀r ∈ [0,T ].



A Difference between BSDEs and BSVIEs:
For BSDE

Y (t) = ξ +

Z T

t
g(s,Y (s),Z (s))ds −

Z T

t
Z (s)dW (s)

= ξ +

Z T

T−δ
g(s,Y (s),Z (s))ds −

Z T

T−δ
Z (s)dW (s)

+

Z T−δ

t
g(s,Y (s),Z (s))ds −

Z T−δ

t
Z (s)dW (s)

= Y (T − δ)+

Z T−δ

t
g(s,Y (s),Z (s))ds−

Z T−δ

t
Z (s)dW (s),

t ∈ [0,T − δ].

Thus, one can obtain the solvability on [T − δ,T ], then on
[T − 2δ,T − δ], etc., to get solvability on [0,T ].



For BSVIE: (with t ∈ [0,T − δ])

Y (t) = ψ(t)+

Z T

t
g(t, s,Y (s),Z (t, s),Z (s, t))ds−

Z T

t
Z (t, s)dW (s)

= ψ(t) +

Z T

T−δ
g(t, s,Y (s),Z (t, s),Z (s, t))ds −

Z T

T−δ
Z (t, s)dW (s)

+

Z T−δ

t
g(t, s,Y (s),Z (t, s),Z (s, t))ds −

Z T−δ

t
Z (t, s)dW (s)

≡ bψ(t) +

Z T−δ

t
g(t, s,Y (s),Z (t, s),Z (s, t))ds −

Z T−δ

t
Z (t, s)dW (s),

where it is not obvious if bψ(t) is/can be chosen FT−δ-measurable!



4. Properties of Solutions.
• A Duality Principle

ODE case: Consider

(4.1) ẋ(t) = Ax(t) + f (t), x(0) = 0,

(4.2) ẏ(t) = −AT y(t)− g(t), y(T ) = 0.

Then
d

dt

£ 〈 x(t), y(t) 〉 ⁄
= 〈 f (t), y(t) 〉− 〈 x(t), g(t) 〉 .

Thus,

(4.3)

Z T

0
〈 x(t), g(t) 〉 dt =

Z T

0
〈 y(t), f (t) 〉 dt.

• (4.2) is called an adjoint equation of (4.1).

• (4.3) is called a duality between (4.1) and (4.2).

• (linear) SDE and BSDE have a similar duality principle. Itô’s
formula is commonly used.



Theorem 4.1. Let ϕ ∈ L2
F(0,T ) and ψ ∈ L2((0,T )× Ω). Let

(4.4) X (t) = ϕ(t)+

Z t

0
A0(t, s)X (s)ds +

Z t

0
A1(t, s)X (s)dW (s),

(4.5)
Y (t)=ψ(t)+

Z T

t

£
A0(s, t)

TY (s)+A1(s, t)
TZ (s, t)

⁄
ds

−
Z T

t
Z (t, s)dW (s), t ∈ [0,T ].

Then the following relation holds:

(4.6) E
Z T

0
〈Y (t), ϕ(t) 〉 dt = E

Z T

0
〈ψ(t),X (t) 〉 dt.

(4.5) | the adjoint equation of (4.4)
(4.6) | the duality between (4.4) and (4.5).



• A Comparison Theorem

Consider BSDEs: (k = 1, 2)

(4.7)

8
<
:

dY k(t) = −gk(t,Y k(t),Z k(t))dt + Z k(t)dW (t),

Y k(T ) = ξk .

Let

(4.8)

8
<
:

g1(t, s, y , z) ≤ g2(t, s, y , z), ∀(t, s, y , z),

ξ1 ≤ ξ2, a.s.

Then

(4.9) Y 1(t) ≤ Y 2(t), t ∈ [0,T ], a.s.

• Itô formula is used in the proof.
• Does not rely on the comparison of FSDEs.



Theorem 4.2. For k = 1, 2, let gk : [0,T ]2 × R× R→ R and
ψk(·) ∈ L2

F(0,T ;R) such that

(4.10)

8
<
:

g1(t, s, y , ζ) ≤ g2(t, s, y , ζ), ∀(t, s, y , ζ),

ψ1(t) ≤ ψ2(t), t ∈ [0,T ], a.s.

Let (Y k(·),Z k(· , ·)) be the adapted M-solution of BSIVE

(4.11)
Y k(t) = ψk(t) +

Z T

t
gk(t, s,Y k(s),Z k(s, t))ds

−
Z T

t
Z k(t, s)dW (s).

Then the following holds:

(4.12) Y 1(t) ≤ Y 2(t), ∀t ∈ [0,T ].



• Sub-Additivity and Convexity.

Let (Y (·),Z (· , ·)) be the adapted solution of BSVIE

(4.13)
Y (t) = ψ(t) +

Z T

t
g(t, s,Y (s),Z (s, t))ds

−
Z T

t
Z (t, s)dW (s).

Denote

(4.14) ρ(t;ψ(·)) = Y (t), t ∈ [0,T ].

• ψ(·) 7→ ρ(t;−ψ(·)) is essentially a dynamic risk measure.



Proposition 4.4. Let g : [0,T ]2 × R× Rd → R.
(i) Suppose (y , ζ) 7→ g(t, s, y , ζ) is sub-additive:

g(t, s, y1 + y2, ζ1 + ζ2) ≤ g(t, s, y1, ζ1) + g(t, s, y2, ζ2),

∀(t, s) ∈ [0,T ]2, y1, y2 ∈ R, ζ1, ζ2 ∈ Rd , a.s. ,

Then ψ(·) 7→ ρ(t;ψ(·)) is sub-additive:

ρ(t;ψ1(·) + ψ2(·)) ≤ ρ(t;ψ1(·)) + ρ(t;ψ2(·)), t ∈ [0,T ], a.s.



(ii) Suppose (y , z) 7→ g(t, s, y , ζ) is convex:

g(t, s, λy1 + (1− λ)y2, λζ1 + (1− λ)ζ2)

≤ λg(t, s, y1, ζ1) + (1− λ)g(t, s, y2, ζ2),

∀(t, s) ∈ [0,T ]2, y1, y2 ∈ R, ζ1, ζ2 ∈ Rd , a.s. , λ ∈ [0, 1].

Then ψ(·) 7→ ρ(t;ψ(·)) is convex:

ρ(t;λψ1(·) + (1− λ)ψ2(·)) ≤ λρ(t;ψ1(·)) + (1− λ)ρ(t;ψ2(·)),
t ∈ [0,T ], a.s. , λ ∈ [0, 1].

• Similar results hold if exchanging super-additivity and
sub-additivity, convexity and concavity, respectively.



5. Some Remarks:

• Regularity of adapted M-solutions:

(1.6)
Y (t) = ψ(t) +

Z T

t
g(t, s,Y (s),Z (t, s),Z (s, t))ds

−
Z T

t
Z (t, s)dW (s), t ∈ [0,T ].

Continuity of t 7→ Y (t) is not trivial. Malliavin calculus will be
involved.

• Necessary conditions for optimal control of FSVIEs can be
obtained.

• Existence of dynamic risk measure for general position
processes.

· · · · · ·



Thank You!


